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Received 26 Apni 1941, in find form 15 July 1991 

Abrhnct. It IS shann *.at the Schrodinger equation math lxnear confinement potenoal has 
an anaiytical sdut'or, The ex*stence of rhe analyti~al solutmn require< additionhl terms 
to the potential other than the linear One. '%he Coulomb-typt potenttal is necessary to get 
non-rem energy eigenvalrres We propose an asymptotically linear patenual. and show that 
vie can analytically tolve the Schrodmger equation wlth thls potential 

1. H ! 3 h d U C t h  

Quaiks are believed to be confined to baryons or mesons. Many experimental data 
show that the coufineme?t potentia! is proportional to the distance between quarks at 
large dislance. There have been many attempts [l] to deduce confinement potentials 
direcrly from rhe QCD Eagrangiar., hut no-one has succeeded. 

The maim of quarks in a harmonic oscillator type potential [Z], proportional to 
the sqiiare 6: the distence or in the bag 131, has been well studied. On the other hand, 
hadr !n masses and heavy quarkonia have heen numerically discussed with linear 
cordnemsnt potentials [4-6]. However, ai: analytical solution of the quark equation 
of motion with an lsymptoiically linear potential proportional to the distance between 
quarks at large distance has not yet been derived 

In this paper one analytical solution of the Schrddinger equation with a linear 
pota~tial proportional to the distance 1s suggested. It is wel! known that the solution 
of t h e  Schro6inger equation with a harmonic oscillator type potential proportional to 
the square of the distance r2 can he wiitten as the product of polynomial functions of 
r and exp(-r2). and the one with a Coulomb type potential proportional to the inverse 
of the distance l l r  is wntten as the product of yolynonlial functions and exp(-r). 
The sdution oftha Schrodingerequaiion with a linear confinement potential is narxally 
supposed to have ?he form of exp(-r"), where 1 < n <Z. Actually it is shown that the 
solution wiih n =$ satisfies the Schriidinger ecption with an asymptotically linear 
confinement potential. At the same time, the existence of an analytical solution requires 
additional tems to the usual confinement potential which is made up of linear+ 
Coulomb terms. 

The trial potential we use is the linear-kCoulomb type potential. Not only is this 
potentia! very popular as a phenomenological potential [4], but also the Coulomb 
t e m  is necesshry for the Schiodinger equation to have a solution with non-zero energy 
eigenvalues, as discussed later. 
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2. Deduction of recurrence ~ Q Z E B U R ~ P Z  

Spherical symmetric Schradinger equation for a particle *,th mass m and orbital 
angular momentum 1 is given by 

(2 .1)  

where R ( r )  is the radial part of the wavefunction !MP); 
*(~)=R(r)Y?(fl) .  (2.2) 

The energy eigenvalue E of the particir is determined by solving ( 2  1). 
For the spherical symmetric potential U( I ) ,  let us consider the confinement potential 

which is made of a long range linear potential and a short range Coulomb type 
potential [4]: 

( 2 . 3  
b U ( r )  -= ar-- 
P 

Constants Q and b are independent of distance r, and their values are determined by 
experiments so as to reproduce proper physical values of the hadrons. Then equation 
(2.1) is rewritten as 

At large r, equation (2.4) becomes 

where 

If W L  require the term proportionai to r after double difierentiatton, u ( r )  must have 
the form exp(-r3") and for the constant term, u(r )  must have the form exp(-r). So 
the radiai part R(P) is assumed to have the form 

R ( r )  =r ~.r"cxp(-er"'~-pr) (2.7) 

where a, p and c, are constants independent of F, and their values zre determined to 
satisfy :he Schradinger equation (2.4).  The constant c is of course positive, because 
the radial wavefunction R ( r )  must become zero at r+w.  If the divergence of the radial 
?an R ( r )  is prohibited at the origin r=O, n must be larger than zero. 

Mter substitution of ( 2  7) into (2.4), the left-hand side of (2.4) becomes 



3. SOhXtbJ~ Of the X&XWE'ellCe f5KmEh 

If the iadial wavefunction R ( r )  is required to be normalizable, c. must be zero at a 
finite number of n. If all c. are zera for n > /< the recurrence formula (2 .11)  gives the 
fallowing conditions: 

3 @ = 0  

2m 
P 2 + , E = 0  

n 

i(2k+&=O (3.4) 

(3.5) 2 ( l c + 1 ) p - - y b = O  
2m 
h 

and 

k(k+ 1) - i(I+ 1) = o  (3.6) 

Equations (3.1) and (3.5) fix (Y and p, but these a and p cannot satisfy (3.2) and 
where it is assumed that ck # 0. 

(3.4). So we introduce additxonai counter terms in the potentiai U ( r ) ,  that is, 

(3.7) 
b 
r 

U(?)= ar--+er'/*+fr-"' 

where canstants e and f are determined io satisfy the Schrodinger equaiion (2.1). Then 
(3.2) and (3.4) are rewritten into 

(3.8) 2m 
3up -7 e = O  

?I- 
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and 

3 2 k + $ ) a + 7 f = O  2m 
h (3.9) 

Now the simultaneous equations we have to solve are (3.1), (3.3), 13.5). (3 6), (3.8) 
and (3.9). From (3.1) we obtain a; 

-~ 

(3.10) 

where a is positive. Mso. from (3  5)  we obtain p '  

b (3.11) p =- 
( k + l ) f i 2  

m 

It sezms as If p was dependent on k But k IS determined by (3.6) as 

k = i  (3 12) 

Thus 

b 
m p =-- 

( I +  I)+? 

IS constant. The condition (3 12) requires that all c, should be zero for n < k if we use 
it in (2.10). 

The energy eigenvalue E is given by (3.3 1; 

a 2 b2 (3 14) ?(!+1) h 

which depends only OF the angular momentum I. Additional constants e and f are 
determined by (3.8) and (3.9) ss 

E = -  

2nd 

(3.15) 

(3.16) 

These are riependeni on I In order rbst die SchrCdinger equaibn with rhe concnement 
potential given by (2.3) nas an aaaiytical solution, the additional terms are necessary, 
2s shown in (3.7), and these terms depend on the orbital angular momentum !. 

4. C5bocksian 

It has been shown that the spherical symmetnc Schriidlnger equation with the potential 

(4.1) U ( r j = m - - + -  
r 1+1  

has an analyticai solution. The iadial wavefunction with orbital angn?ar momentum 1 
can be written as 

Rirf=c ,r '  e x p ( - d - p i )  (4.2) 
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where 

and 

m p =- 
( I  + l)h2 /I 

The constant c! is determmed by the normalization condition 
The energy eigenvalue E is given by 

(4.3) 

(4.4) 

2nd depends only on 1 The state is determmed only by the orbltal angular momentum 
1 and is degenerate (21+1)-fold. 

In the case where the potentizl does not inciude the Coulomb term proportlonal 
to l!r,  we may set b=O. From (3 5 )  or (4.41, p = O  Then, from (4.5). the energy 
eigenvalue is always zero This potential is the sunpiest, but is not very interesting. So 
we propose the asymptotically linear confinement potential (4.1). The most popular 
phenomenological p~ten t ia l  that is used to calculate hadronic properties is the !inear+ 
Coulomb type potential [4]. If necessary, we could add other terms, hut the potential 
(41) is !hp r inq l~s t  aspp!otica!!y linear po!entia! that w e  can so!ve snz!y+cs!!;z. 
Calculations of hadron properties will be carried out with this potential. 

For the purpose of comparison, Eichten's potential [4] 

b 
U ( r )  = ar - -  (4.6) 

r 

and the new proposed one ( 4  are shown in figure 1 with the same values of the 
parameters a and 6. It will be easy to determine the vdlues of the parameters a and 
6 to reproduce the physical quantities of hadrons. 

Figure 1. Companson of the potential (4 1) wth 1-0 (--I and E!chten's potential [41 
I. ,, I (".O, ,- - - - j  wrih ihe same d u e s  of a = o  is: G e v ,  b =a32 and mass in = i .@ Gcj' 
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If the quark state IS given by an analytical form, many physical properties of quarks 
can be easily calculated and understood. It must be worthwhile to investigate quarks 
in the potentiai given by (4.1) 
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