Analytical solution of the Schrodinger equation with linear confinement potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 245267
(http://iopscience.iop.org/0305-4470/24/22/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:01

Please note that terms and conditions apply.

Amalytical solluticm of the Schrëdimger equation with linear confimememt potential

Hirokazu Tezuka
Natural Science Laboratory, Toyo University, Asaka Campus, 2-11-10 Oka, Asaka-shn, Sa1tama 351, Japan

Recetved 26 April 1991, in final form 15 July 1991

Abstract

It is shown that the Schrodinger equation wath linear confinement potential has an analytical solutson The existence of che analytical solution requires additional terms to the potentral other than the inear one. The Coulomb-type potental is necessary to get non-zero energy eigenvalues We propose an asymptoticaliy linear potential, and show that we can analytically colve the Schrodinger equation with this potential

1. Hefroduction

Quarks are believed to be confined to baryons or mesons. Many experimental data show that the confinement potential is proportional to the distance between quarks at large distance. There have been many attempts [1] to deduce confinement potentials diredly from the QCD Lagrangian, but no-one has succeeded.

The moturn of quarks in a harmonic oscillator type potential [2], proportional to the square of the distance or in the bag [3], has been well studied. On the other hand, hadr in masses and heavy quarkonia have been numerically discussed with linear comanement potentials [4-6]. However, an analytical solution of the quark equation of motion with an asymptotically linear potential proportional to the distance between quarks at large distance has not yet been derived

In this paper one analytical solution of the Schrodinger equation with a linear potential proportional to the distance is suggested. It is well known that the solution of the Schrödinger equation with a harmonic oscillator type potential proportional to the square of the distance r^{2} can be written as the product of polynomial functions of r and exp $\left(-r^{2}\right)$, and the one with a Couiomb type potential proportional to the inverse of the distance $1 / r$ is writen as the product of polynomial functions and $\exp (-r)$. The solution of the Schrödinger equation with a linear confinement potential is naturally supposed to have the form of $\exp \left(-r^{n}\right)$, where $1<n<2$. Actually it is shown that the solution with $n=\frac{3}{2}$ satisfies the Schrödinger equation with an asymptotically linear confinement potential. At the same time, the existence of an analytical solution requires additional terms to the usual confinement potential which is made up of linear + Coulomb terms.

The trial potential we use is the linear + Coulomb type potential. Not only is this potential very popular as a phenomenological potential [4], but also the Coulomb term is aecessary for the Schrödinger equation to have a solution with non-zero energy eigenvalues, as discussed later.

2. Deduction of recurreme formula

Spherical symmetric Schrödinger equation for a particle with mass m and orbital angular momentum l is given by

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)-\frac{l(l+1)}{r^{2}} R+\frac{2 m}{\hbar^{2}}\{E-U(r)\} R=0 \tag{2.1}
\end{equation*}
$$

where $R(r)$ is the radial part of the wavefunction $\psi(r)$;

$$
\begin{equation*}
\psi(r)=R(r) Y_{l}^{m}(\Omega) . \tag{2.2}
\end{equation*}
$$

The energy eigenvalue E of the particie is determmed by solving (21).
For the spherical symmetric potential $U(r)$, let us consider the confinement potential which is made of a long range linear potential and a short range Coulomb type potential [4]:

$$
\begin{equation*}
U(r)=a r-\frac{b}{r} \tag{2.3}
\end{equation*}
$$

Constants a and b are independent of distance r, and their values are determined by experiments so as to reproduce proper physical values of the hadrons. Then equation (2.1) is rewritten as

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)=\left\{\frac{2 m}{\hbar^{2}} a r-\frac{2 m}{\hbar^{2}} E-\frac{2 m}{\hbar^{2}} \frac{b}{r}+\frac{l(l+1)}{r^{2}}\right\}< \tag{2.4}
\end{equation*}
$$

At large r, equation (2.4) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} r^{2}}=\frac{2 m}{\hbar^{2}} a r u-\frac{2 m}{\hbar^{2}} E u \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
R(r)=\frac{u(r)}{r} \tag{2.6}
\end{equation*}
$$

If Wh requre the term proportional to r after double differentiation, $u(r)$ must have the form $\exp \left(-r^{3 / 2}\right)$ and for the constant term, $u(r)$ must have the form $\exp (-r)$. So the radial part $R(r)$ is assumed to have the form

$$
\begin{equation*}
R(r)=\sum_{n}^{\pi} c_{n} r^{n} \exp \left(-\alpha r^{3 / 2}-\beta r\right) \tag{2.7}
\end{equation*}
$$

where α, β and c_{n} are constants independent of r, and their values are dexermined to satisfy the Schrödinger equation (2.4). The constant α is of course positive, because the radial wavefunction $R(r)$ must become zero at $r \rightarrow \infty$. If the divergence of the radial nart $R(r)$ is prohibited at the origin $r=0, n$ must be larger than zero.

After substitution of (27) into (2.4), the left-hand side of (2.4) becomes
$\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} R}{\mathrm{~d} r}\right)$

$$
\begin{align*}
= & \sum_{n} c_{n}\left\{\frac{9}{4} \alpha^{2} r^{n+1}+3 \alpha \beta r^{n+(1 / 2)}+\beta^{2} r^{n}-\frac{3}{2} \alpha\left(2 n+\frac{5}{2}\right) r^{n-(1 / 2)}\right. \\
& \left.-2 \beta(n+1) r^{n-1}+n(n+1) r^{n-2}\right\} \exp \left(-\alpha r^{3 / 2}-\beta r\right) \tag{2.8}
\end{align*}
$$

and the right-hand side of (24) is
$\sum_{n} c_{n}\left\{\frac{2 m}{\hbar^{2}} a r^{n+1}-\frac{2 m}{\hbar^{2}} E r^{n}-\frac{2 m}{\hbar^{2}} b r^{n-1}+l(l+1) r^{n-2}\right\} \exp \left(-\alpha r^{3 / 2}-\beta r\right)$.
Then the equation we have to solve is

$$
\begin{align*}
& \sum_{n} c_{n}\left[\left(\frac{9}{4} \alpha^{2}-\frac{2 m}{\hbar^{2}} a\right) r^{n+1}+3 \alpha \beta r^{n+(1 / 2)}+\left(\beta^{2}+\frac{2 m}{\hbar^{2}} E\right) r^{n}-\frac{3}{2}\left(2 n+\frac{5}{2}\right) \alpha r^{n-(1 / 2)}\right. \\
&-\left.\left\{2(n+1) \beta-\frac{2 m}{\hbar^{2}} b\right\} r^{n-1}+\{n(n+1)-l(l+1)\} r^{n-2}\right]=0 \tag{2.10}
\end{align*}
$$

This equation is rewritten into the following recurrence formula.

$$
\begin{align*}
& \{n(n+1)-l(l+1)\} c_{n}-\left(2 n \beta-\frac{2 m}{\hbar^{2}} b\right) c_{n-1}-\frac{3}{2}\left(2 n-\frac{1}{2}\right) \alpha c_{n-(3 / 2)} \\
& \quad+\left(\beta^{2}+\frac{2 m}{\hbar^{2}} E\right) c_{n-2}+3 \alpha \beta c_{n-(s / 2)}+\left(\frac{9}{4} \alpha^{2}-\frac{2 m}{\hbar^{2}} a\right) c_{n-3}=0 \tag{2.11}
\end{align*}
$$

3. Solution of the recarrence formula

If the radial wavefunction $R(r)$ is required to be normalizable, c_{n} must be zero at a finite number of n. If all c_{n} are zero for $n>k$, the recurrence formula (2.11) gives the following conditions:

$$
\begin{align*}
& \frac{9}{4} \alpha^{2}-\frac{2 m}{\hbar^{2}} a=0 \tag{31}\\
& 3 \alpha \beta=0 \tag{3.2}\\
& \beta^{2}+\frac{2 m}{\hbar^{2}} E=0 \tag{3.3}\\
& \frac{3}{2}\left(2 k+\frac{5}{2}\right) \alpha=0 \tag{3.4}\\
& 2(k+1) \beta-\frac{2 m}{\hbar^{2}} b=0 \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
k(k+1)-l(l+1)=0 \tag{3.6}
\end{equation*}
$$

where it is assumed that $c_{k} \neq 0$.
Equations (3.1) and (3.5) fix α and β, but these α and β cannot satisfy (3.2) and (3.4). So we introduce additional counter terms in the potentiai $U(r)$, that is,

$$
\begin{equation*}
U(r)=a r-\frac{b}{r}+e r^{1 / 2}+f r^{-1 / 2} \tag{3.7}
\end{equation*}
$$

where constants e and f are determined to satisfy the Schrödinger equation (2.1). Then (3.2) and (3.4) are rewritten into

$$
\begin{equation*}
3 \alpha \beta-\frac{2 m}{n^{2}} e=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{2}\left(2 k+\frac{5}{2}\right) \alpha+\frac{2 m}{\hbar^{2}} f=0 . \tag{3.9}
\end{equation*}
$$

Now the simultaneous equations we have to solve are (3.1), (3.3), (3.5), (36), (3.8) and (3.9). From (3.1) we obtain α;

$$
\begin{equation*}
\alpha=\frac{2}{3} \sqrt{\frac{2 m}{\hbar^{2}} a} \tag{3.10}
\end{equation*}
$$

where α is positive. Also, from (35) we obtain β.

$$
\begin{equation*}
\beta=\frac{m}{(k+1) \hbar^{2}} b \tag{3.11}
\end{equation*}
$$

It seems as if β was dependent on k. But k is determined by (3.6) as

$$
\begin{equation*}
k=l \tag{312}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\beta=\frac{m}{(l+1)^{n^{2}}} b \tag{313}
\end{equation*}
$$

is constant. The condition (312) requires that all c_{n} should be zero for $n<k$ if we use it in (2.10).

The energy eigenvalue E is given by (3.3);

$$
\begin{equation*}
E=-\frac{m}{2(l+1)^{2} \hbar^{2}} b^{2} \tag{314}
\end{equation*}
$$

which depends only or the angular momentum l. Additional constants e and f are determined by (3.8) and (3.9) as

$$
\begin{equation*}
e=\frac{b}{l+1} \sqrt{\frac{2 m}{\hbar^{2}} a} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
f=-\left(l+\frac{5}{4} ; \sqrt{\frac{2 \frac{2}{2}^{2}}{m}} a\right. \tag{3.16}
\end{equation*}
$$

These are dependent on l In order that the Schrodinger equation with the continement potential given by (2.3) nas an analytical solution, the additional terms are necessary, as shown in (3.7), and these terms depend on the orbital angular momentum l.

4. Conclusion

It has been shown that the spherical symmetnc Schrödinger equation with the potential

$$
\begin{equation*}
U(r)=a r-\frac{b}{r}+\frac{1}{l+1} \sqrt{\frac{2 m}{\hbar^{2}}} a b r^{1 / 2}-\left(l+\frac{5}{4}\right) \sqrt{\frac{2 \hbar^{2}}{m} a r^{-1 / 2}} \tag{4.1}
\end{equation*}
$$

has an analytical solution. The radial wavefunction with orbital angular momentum / can be writen as

$$
\begin{equation*}
R(r)=c r^{2} \exp \left(-\alpha r^{3 / 2}-\beta_{i}\right) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{2}{3} \sqrt{\frac{2 m}{\hbar^{2}} a} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\frac{m}{(l+1) \hbar^{2}} h . \tag{4.4}
\end{equation*}
$$

The constant c_{l} is determuned by the normalization condition
The energy eigenvalue E is given by

$$
\begin{equation*}
E=-\frac{m}{2(l+1)^{2} \hbar^{2}} b^{2} \tag{45}
\end{equation*}
$$

and depends only on l The state is determined only by the orbital angular momentum l and is degenerate $(2 l+1)$-fold.

In the case where the potential does not melude the Coulomb term proportional to $1 / r$, we may set $b=0$. From (35) or (4.4), $\beta=0$ Then, from (4.5), the energy eigenvalue is always zero This potential is the simplest, but is not very interesting. So we propose the asymptotically linear confinement potential (4.1). The most popular phenomenological potential that is used to calculate hadronic properties is the linear+ Coulomb type potential [4]. If necessary, we could add other terms, but the potential (4.1) is the simplest asympotically linear potential that we can solve analytically. Calculations of hadron properties will be carried out with this potential.

For the purpose of comparison, Eichten's potential [4]

$$
\begin{equation*}
U(r)=a r-\frac{b}{r} \tag{4.6}
\end{equation*}
$$

and the new proposed one (4i) are shown in figure 1 with the same values of the parameters a and b. It will be easy to determine the vdlues of the parameters a and b to reproduce the physical quantities of hadrons.

Figure 1. Companson of the potentral (41) with $l=0(-)$ and Etchten's potental [4]

If the quark state is given by an analytical form, many physical properties of quarks can be easily calculated and understood. It must be worthwhile to investigate quarks in the potential given by (4.1)

References

[1] Kogut J and Susskind L 1974 Phys Rev D 93501
Wilson K G 1974 Phys Rev D 102445
Poggo E C and Schntzer H J 1978 Phys Rev Lett 41 1344, 1979 Phys Rev D 191557
Suura H 1978 Phvs Rev D 17 469, 1979 Fhys Rev D 201412
Rucnardson J L 1979 Phys Lett 82B 272
Buchmuller W, Grunberg G and Tye S-H H 1980 Phvs Rev Lett 45103
Quigg C. Thacker H B and Losner J L 1980 Phys Rev D 21234
[2] Isgar N and Karl G 1977 Phys. Lett 72R 109, 1980 Phvs Rev D 213175
Tegen R, Brockmann R and Weise W 1982 Z Phys A 307339
Horacsek K G, Iwamura Y and Nogam. Y 1985 Phys Rev D 323001
[3] Chodos A et al 1974 Phys Rev D 93471
Wu T T, McCoy B M and Cheng H 1974 Phys Rev D 93495
DeGrand T et al 1975 Phys Rev D 122060
Huang K and Sturnp D R 1976 Phys Rev. D 14223
Brown G E and Rho M 1979 Phys Lett 82B 177
Squires E J 1979 Rep Prog Phys 421187
Miller G A, Thomas A W and Théberge S 1980 Phys Lett 918192
Thomas A W 1983 Adv Nucl Phys 131
[4] Erchten E et al 1975 Phys Rev Lett. 34 369, 1980 Phys. Rev D 21203
Kaushal R S 1975 Phys. Lett 57 T 354, 1975 Phys Lett 6 配 81
Pignon D and Piketty C A 1978 Nucl. Phys B 137340
Nickısch L J, Durand L and Durand B 1984 Phys Rev D 39660
[5] Henrqques A B, Kellett B H and Moornouse R G 1976 Phys Lett 64B 85
Geffen D A and Suura H 1977 Phys Rev D 163305
Bhanot G and Rudaz S 1978 Phys Lett 793119
Buchmuller W and Tye S-H H 1981 Phys Rev D 24132
Miler K J and Oisson M G 1982 Phys. Rev D 252383
[6] De Rujula A, Georgı H and Glashow S L 1975 Phvs Rev D 12147
Gumon J F and Li L F 1975 Phys Rev D 123583
Schntzet H 31976 Phys Lett 6SE 239
Barbien R et al 1976 Nucl Phys B 105125
Carlson C E and Gross F 1978 Phys Lett 748404
Beavis D et at 1979 Phys. Rei D 20743
Eichten E and Fenterg F 1979 Phys. Rev Lett 43 1205, 1981 Phys Rey D 232724
Bank N and Jena S N 1980 rays Rev D 2t 3147
Gupta S N, Radford S F ana Repko W W 1982 Phys Rev D 263305,1986 Phys Rev D 34201
Buchmulier W 1982 Phys Lett 1128 479
Moxhay P and Rosnet J L 1983 Phys. Rev D 23 1132; 1985 Phys Rev D 311762
McCiary R and Byers N 1983 Phys Rev D 291692
Michael C 1986 Phys. Rev Lett. 551219
Igi K and Ono S 1986 Fhys Rev. D 333349
Schmitz S, Beavis D and Kaus P 1987 Phys. Ret D 36184
Childers R W 1957 Phys Rev D 363813
Dib C O, Giman F J and Franzm P J 1988 Phys Rev. D 37735
Fulcher L P 1988 Phys Ret D 37 1258, 1990 Phys Rev D 322337
Gupta S N, Repko W W and Suchyta C J III 1989 Phys. Rev D 39974

